Nested Logit Derivatives for NLS Gradient

C. Luke Watson*

April 9, 2024

1 Small Model

Consider a model of demand where various agents, t, make choices over products, j, that are sold by various brands, f. Let there be four inside goods and one outside good. Let there be three nests $\left\{N_{0}, N_{1}, N_{2}\right\}$, such that we have the following nesting structure: $\{(0),(1,2),(3,4)\}$. Let $d_{j t}$ be the unconditional share of the good, let $d_{j t \mid n}$ be the nestconditional share of the good, where $n=N(j)$ is implied for each good j, and let d_{n} be the nest share. Let demand be calculated as $D_{j t}=d_{j t} \cdot L S_{t}$, where $L S_{t}$ is a scaling factor that translates shares to demand-quantities. Let $V_{j t}$ be the utility value of a good, where:

$$
V_{j t}= \begin{cases}Y_{j t} \beta^{1}+X_{j} \beta^{2}+Z_{t} \beta^{3}+X_{j} Z_{t} \beta^{4}+F_{j} \beta^{5}, & j>0 \tag{1}\\ W_{t} \lambda^{1}+Z_{t} \lambda^{2}+W_{t} Z_{t} \lambda^{3}, & j=0\end{cases}
$$

where Y is agent-product characteristics, X are product characteristics, F is a brand FE, Z are 'inside’ agent characteristics, and W are 'outside' agent characteristics.

The above along with the nested-logit assumptions yields the following unconditional product share:

$$
\begin{equation*}
d_{1 t}=\frac{\left(\mathrm{e}^{V_{1 t} / \rho_{1}}\right)\left(\mathrm{e}^{V_{1 t} / \rho_{1}}+\mathrm{e}^{V_{2 t} / \rho_{1}}\right)^{\rho_{1}-1}}{\left(\mathrm{e}^{V_{0 t}}\right)+\left(\mathrm{e}^{V_{1 t} / \rho_{1}}+\mathrm{e}^{V_{2 t} / \rho_{1}}\right)^{\rho_{1}}+\left(\mathrm{e}^{V_{3 t} / \rho_{2}}+\mathrm{e}^{V_{3 t} / \rho_{2}}\right)^{\rho_{2}}} \tag{2}
\end{equation*}
$$

[^0]
2 Gradient

We wish to minimize the squared loss function:

$$
\begin{equation*}
m(\beta, \lambda, \rho)=\frac{1}{2 \cdot N_{b}} \sum_{b \in N_{b}}\left(\ln \left(D_{b}(\beta, \lambda, \rho)\right)-\ln \left(D_{b}^{\text {Data }}\right)\right)^{2} . \tag{3}
\end{equation*}
$$

Let $\theta=(\beta, \lambda, \rho)$ with K elements, then the gradient is a vector $g=\nabla_{\theta} m$, such that:

$$
\begin{align*}
g_{k}=\frac{\partial m(\theta)}{\partial \theta^{k}} & =\frac{1}{N_{b}} \sum_{j}\left(\frac{\partial \ln \left(D_{j}(\theta)\right.}{\partial \theta^{k}}\right)=\frac{1}{N_{b}} \sum_{j}\left(\frac{\partial \ln \left(\sum_{t \in \mathcal{S}_{j}} L S_{t} d_{j t}(\theta)\right)}{\partial \theta^{k}}\right) \\
& =\frac{1}{N_{b}} \sum_{j}\left(\sum_{t \in \mathcal{S}_{j}}\left\{\left(\frac{D_{j t}}{D_{j}}\right)\left(\frac{\partial d_{j t} / \partial \theta^{k}}{d_{j t}}\right)\right\}\right) . \tag{4}
\end{align*}
$$

3 Partial Derivatives wrt the Parameters

Here, we display the derivatives of $d_{1 t}$ necessary for the gradient.

$$
\begin{align*}
\frac{\partial d_{1 t}}{\partial \beta^{k}} & =\frac{d_{1 t}}{\rho_{1}}\left[\frac{\partial V_{1 t}}{\partial \beta^{k}}+\left(\rho_{1}-1\right)\left(\sum_{j \in N_{1}} \frac{\partial V_{j t}}{\partial \beta^{k}} d_{j t \mid N_{1}}\right)-\rho_{1}\left(\sum_{n} \sum_{j \in n} \frac{\partial V_{j t}}{\partial \beta^{k}} d_{j t}\right)\right] \tag{5}\\
& =\frac{d_{1 t}}{\rho_{1}}\left[\Gamma_{1 t}^{1, \beta^{k}}+\Gamma_{N_{1}, t}^{2, \beta^{k}}+\Gamma_{t}^{3, \beta^{k}}\right] \tag{6}\\
\frac{\partial d_{1 t}}{\partial \lambda^{k}} & =\frac{\partial V_{0 t}}{\partial \lambda^{k}} d_{0 t} d_{1 t} \tag{7}\\
& =d_{1 t}\left[\Gamma_{t}^{1, \lambda^{k}}\right] \tag{8}\\
\frac{\partial d_{1 t}}{\partial \rho_{1}} & =-\frac{d_{1 t}}{\rho_{1}^{2}}\left[V_{1 t}+\left(\rho_{1}\left(1-d_{N_{1}, t}\right)-1\right)\left(\sum_{j \in N_{1}} V_{j t} d_{j t \mid N_{1}}\right)-\left(\rho_{1}^{2}\left(1-d_{N_{1}, t}\right)\right) \cdot \Lambda_{N_{1}, t}\right] \tag{9}\\
& =-\frac{d_{1 t}}{\rho_{1}^{2}}\left[\Gamma_{1 t}^{1, \rho_{1}}+\Gamma_{N_{1}, t}^{2, \rho_{1}}\right] \tag{10}\\
\frac{\partial d_{1 t}}{\partial \rho_{2}} & =\frac{d_{1 t}}{\rho_{2}^{2}}\left[\rho_{2}\left(\sum_{j \in N_{2}} V_{j t} d_{j t}\right)-\rho_{2}^{2}\left(d_{N_{2}, t}\right) \cdot \Lambda_{N_{2}, t}\right] \tag{11}\\
& =\frac{d_{1 t}}{\rho_{2}^{2}}\left[\Gamma_{N_{2}, t}^{1, \rho_{2}},\right. \tag{12}
\end{align*}
$$

where $\Lambda_{n, t}=\ln \left(\sum_{j \in n} \mathrm{e}^{V_{j t} / \rho_{n}}\right)$, and the $\{\Gamma\}$ terms are implicitly defined.

[^0]: *Watson: Center for Financial Research, Federal Deposit Insurance Corporation, email: chwatson@fdic.gov. The views expressed here do not represent the views of the FDIC or US Government.

